考研信息
院校招生
考研备考
考研资料
考研复试
考研调剂
来源: 责任编辑:superadmin 时间:2021-07-22
与导数相关的知识点可谓是每年考研题中必不可少的一道“菜”,无论是选择题还是填空,或者解答题。所以将导数的相关知识点学习清楚,复习明白是我们要做的首要任务。
导数的计算中要先掌握四则运算,反函数和复合函数的求导运算。有了这些就可以将导数的大部分计算题搞定,除此之外,还需要掌握几个特殊函数的导数计算:幂指函数,隐函数,参数方程,抽象函数,我们一一介绍。
幂指函数:什么是幂指函数?一般的,将形如y=f(x)g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。简单的说就是
隐函数:设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
其中二阶导数不需要记公式,只需要掌握二阶求导过程,做题目时直接计算就可以了。
抽象函数:把没有给出具体解析式的函数称为抽象函数。抽象函数的求导跟隐函数求导类似,直接求导,把因变量看成自变量的函数,求导即为y' 。
以上就是导数计算中几种特殊函数导数计算,在考研中会跟其他知识点和章节结合出题,结合最多的就是导数应用,如何结合,怎么处理,佟老师下次继续为大家讲解。
扫码添加获取各院校录取名单
扫码添加研线老师,打牢基础
2024考研备考择校指导
考研信息
院校招生
考研备考
考研资料
考研复试
考研调剂
择校蓝皮书